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ABSTRACT

Within the hydromagnetic approximation, the effects of resistive,
viscous, and thermal conduction dissipation on the structure of ghock
waves is studied. A perturbation analysis about the upstream and down-
stream stationary points is developed, which, when coupled with the shock
evolutionary conditions, determines the conditions for the formation of
discontinuities in the shock structure. The viscous subshock for fast
shock waves and the hydromagnetic analogue of the gas dynamic isothermal
discontinuity for fast and slow shocks are analyzed. Very oblique fast
shocks require both resistive and viscous dissipation for a steady
shock structure. Strong slow shocks propagating nearly along the magnetic
field fail to steepen if only resistive dissipation is included. The
rotational discontinuity does not possess a stable shock structure for

any of the dissipation processes considered.



1.0 Introduction

An initial approach in investigating the structure of hydromagnetic
shock waves is to include the dissipative terms in the hydromagnetic
fluid equations {(Marshall, 1955; Anderson, 1963 and references therein;
Leonard, 1966). With various approximations often including only one
dissipation process, these equations reduce to a differential equation
which describes the variation of the plasma quantities through the shock
front and yields an estimate of the shock thickness. For strong shocks,
however, a single dissipation process is fregquently incapable of satisfying
the Rankine-Hugoniot jump conditions. It is the purpose here to determine
for what flow conditions multiple dissipation mechanisms are a required

part of the shock structure.

The dissipation rate in a shock wave depends inversely on the shock
thickness (Kantrowitz and Petschek, 1966). If the strengths of the
dissipative terms are sufficiently different, i.e., if the characteristic
scale length of each type of dissipation is different, the shock structure
is often resolved into two or more regions: a broad shock transition
in which some of the plasma quantities vary smoothly from their upstream
to downstream values, and a thin or "discontinuous" region, called a
subshock, located within the broad transition. Across the subshock
some plasma guantities undergo a sharp transition, and remain roughly
constant throughout the remainder of the shock front. The isothermal
discontinuity (Landau and Liftshitz, 1959) for gas dynamic shocks and
the viscous discontinuity for the fast perpendicular hydromagnetic shocks

(Marshall, 1955) are examples of subshocks.



Congsiderable information about the shock structure is derivable
from the evolutionary conditions (Anderson, 1963) and the propagation
of linear waves with finite dissipation. Within the hydromagnetic approxi-
mation the dissipation processes considered are resistivity, viscosity,
and thermal conductivity. For purposes of review and to fix notation,

the evolutionary conditions are:

Fast Shock: U; > CF ; C > U >2¢C

1 Fa - Iz
Rotational Discontinuity: CFl > Uy > CIl; C12 > Us > CSLZ
h : 2 Uy > C ; C > U
Slow Shock CI1 1 SLq SLs 2

C_, CI' C are the fast, intermediate, and slow hydromagnetic speeds,

F SL

respectively, and are defined in section 2.0; U is the normal component
of the flow velocity; subscripts 1 (2) refer to upstream (downstream)
flow conditions. Kantrowitz and Petschek (1966) demonstrated that the
rotational discontinuity is non-evolutionary, a conclusion which is

reinforced by the discussion of section 4.0.

A very brief and rough analysis of the effects of dissipation on
linear hydromagnetic waves is given in section 2.0. Since the interest
here is concerned with wave propagation near the shock front, the limit
of wavelengths comparable with dissipation scale lengths is considered.
A physical discussion of the downstream conditions leading to the
formation of a subshock is given in section 3.0. From the steepening
arguments and the linear wave analysis of section 2.0, the resistive

fast shock propagating perpendicular to the magnetic field is shown to



develop a subshock if the sound speed exceeds the flow velocity downstream.
Oblique propagation of fast and slow shocks with resistive and thermal

conduction dissipation is discussed using Friedrich's diagrams.

In section 4.0 a perturbation method is presented by which the
stability, to be defined precisely below, of both the upstream and
downstream stationary points of a shock for a given dissipation process
is determined. The results of section 3.0 about the downstream point
are readily recovered. Under certain conditions the upstream point of
the resistive slow shock fails to steepen indicating that resistivity
alone is incapable of starting the shock transition. Fast and slow
shocks in which the magnetic field changes across the shock cannot be
purely viscous, but are either resistive if the shock is weak or contain
a combination of resistive and viscous dissipation. For the types of
dissipation considered here the rotational discontinuity does not possess

a stable transition from upstream to downstream flow conditions.

It is not the purpose here to determine for what Mach number and
upstream plasma conditions multiple dissipation mechanisms are required.
The criteria developed for subshock formation combined with the Rankine-
Hugoniot relations will provide a solution to this problem. Since,
except for particularly simple shock conditions, this would require a
rather involved and tedious computation, only physical results will be

emphasized here.



2.0 Linear Theory

2.1  Hydromagnetic Equations

The hydromagnetic equations with dissipation including Ohm's

law and Maxwell's eguations are (Landau and Lifshitz, 1960)

ap . -
e TV (pw) =0
ay_ B2 .B_.VE 2 'n
°[E+X'VY-] *V[“gﬁ‘]“‘ﬁ“‘ R G KA

o fov’ , B®, P + Ve pv—‘i-2—+——l———B rrrre (2.1)
St| 2 8r |y — 1 —(2 Yy—1 p 4m )
o2
=V e BX VX B 40 s v
oB

— =V x ( ><B)+9—2——VZB
ot r==z amg = =

P is the mass density, v the fluid velocity, P the pressure assumed
equal and isotropic for electrons and ions, B the magnetic field, T the
temperature, Y the ratio of specific heats, and C the velocity of light.
Gaussian units are used throughout. The adiabatic equation of state,
P/pY = constant, was assumed in deriving the energy equation. The
dissipation coefficients are the scalor conductivity o, the thermal
conductivity K, and the two coefficients of viscosity n and ; g is the

vigcous stress tensor



+ 76, = (2.2)

6ik equals 1 if i = k, and zero otherwise.

For the purposes of this paper the dissipation coefficients
are assumed constant, independent of the plasma state and position. As
will be discussed below, this assumption is not overly restrictive. The
transport properties described by these idealized dissipation coefficients
can be interpreted as arising from particle-particle Coulomb collisions
or, in a collisionless plasma, from the wave-particle interactions of
plasma turbulence theory. For collisionless phenomena equations 2.1,
however, are inappropriate and should be replaced with the two fluid
equations for electrons and ions, including finite gyroradius effects
and the contributions to the energy and momentum equations from turbulent
wave fields. The hydromagnetic theory is useful, however, in elucidating
the effects of various dissipation mechanisms; the conclusions, therefore,
are expected to be appropriate in principle, if not in detail, to a

collisionless theory.

2.2 Linear Hydromagnetic Waves

To obtain the linear hydromagnetic response, the plasma
parameters in equations 2.1 are expanded about a uniform, stationary
state, and second and higher order terms in the fluctuating quantities
are neglected. In this section it is assumed that the stationary magnetic
field is in the =z direction, Bp = Bo éz, and that the stationary electric
field and fluid velocity vanish. Stationary quantities are denoted by

a zero subscript. After Fourier analyzing in space and time as



elE-n x “'lwt, the above set of eguations is reduced to the following

dispersion relation

. 2 . 2 - - o
w? — x2c? ——3395——553—9} w* —'wz{kzcg + kzcz] + k”c;cg cos? B

I Po S
(2.3)
2 pa—
+ i wnk [wz —-k2C2 kzcz] =0
Po S A
where
2
_52 CA 19)_]1
A, ik?C? Po
ATIWO
k2 y — 1
_ 1 i ER;- Y wn n
c?2 =c? 20 i— |C + =
S ) 1+ i k4K (y — 1) Do 3
wPo
=2 _ =2 > _ B§
CI = CA cos” B; CA = 2o (2.4)
o2 - YPo
S Po

CA is the Alfvén speed, CS the sound speed, and 8 is the angle between

E_and Bo.

The dispersion relation 2.3 contains twelve modes, six of
which are the hydromagnetic waves modified by dissipation, and the other
six of which depend primarily on the dissipation and are highly damped
(Banos, 1956). For the present purpose only a limited amount of
information about the hydromagnetic waves is required, and the highly

damped modes will be neglected. The derivation and discussion will



be very imprecise, in particular with respect to comparing the real

and imaginary parts of the frequency or wave vector (see Trehan, 1965,
for a more complete discussion). The dissipative terms are assumed

to be reasonably small so that a wave is only weakly damped. Since

only the real part of the dispersion relation is needed below, the last
term in the second bracket of 2.3 can be neglected without serious error,

and 2.3 can be written as

2 2 2 2
w- o omz . Nwsin® Bhiw” 2T =2 )
k? €r 1t Po Mk?- CF} (kz CSL] 0 (2.5)
where

—, = 2 1/2

E;i cr o+ cé cy o+ c; , \
= A 2oy o jia 2 Re2

-, 5 5 CSCA cos“ 6 (2.6)
SL

If the digsipative terms are dropped from EA, Eé, 2.4 defines the inter-

mediate speed, CI' and 2.6 the fast, CF, and slow, C__, hydromagnetic

SL
speeds (Kantrowitz and Petschek, 1966).

Before proceeding it is convenient to define three subsidiary

dissipation or diffusion lengths:

r = (2.7)
m 470 CHM
[4ns o]
re - C (2.8)
o HM
K
Yt T o C (2.9)
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CHM is to be assigned the hydromagnetic speed of the particular wave
being considered; r and r, are the lengths that make the magnetic Reynolds
number and the viscous Reynolds number equal to unity; r. is the scale

length for thermal diffusion.

The discussion of subshocks in section 3.0, involves
consideration of hydromagnetic waves or wave packets localized to the
region of the shock layer (Anderson, 1963). Since the lengths defined
by 2.7, 2.8, and 2.9 are typical of the shock layer thickness formed
by their respective dissipation processes, the appropriate linear waves
have krm >> 1, kre >> 1, and krt >> 1, These three scale lengths
are usually of different magnitude, thus permitting the effects of each
on the hydromagnetic wave speeds to be considered separately. Only the
phase velocity of the waves is needed, so that W and k are now considered
real, and imaginary contributions to the freguency or wave vector are

dropped.

2.2.1 Resistivity

When resistivity is the most important dissipation

process, only the Alfvén speed is affected so that EZ becomes

(2.10)

If the wavelength is small compared to the resistive diffusion length,
krm >> 1, the effective Alfvén speed in the plasma is reduced to zero.
In these waves the perturbation currents are resistively dissipated so

that magnetic fluctuations do not propagate. Setting Ei = 0 in 2.4
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and 2.6, the three hydromagnetic speeds become Ei = CSL = 0 and

c =c¢

- i the intermediate and slow waves cease to propagate, and the

fast wave becomes an isotropic sound wave.

2.2.2 Thermal Conductivity

If 0= and n=2¢ = 0, the sound speed becomes

2
K2y2 (y — 1)
= _ YPo 1 + rt ————ﬁr——

S Po g k*r? (v —1)®

(2.11)

When krt >> 1, Eé +’E; = Pg/po; the effective ratio of specific heats
becomes unity, which is characteristic of an isothermal plasma. For
these waves heat is diffused sufficiently rapidly that no temperature
fluctuations are propagated. The intermediate speed is unaffected for
krt >> 1, and substituting és for Eg in 2.6 defines the fast and slow

~

. Not > ¢ d > .
I ote that CF CF and C lod

speeds C da ¢
peeds P and C s, SL

S

2.2.3 Viscosity

Setting 0 = ® and K = 0, the dispersion relation 2.3,

after a bit of manipulation, becomes approximately

C
w?_ _ 1
+ 242
K2 1 k re
2
w? Cp
%2 cz (2.12)
2.2 F
1+ k%r
C2 + C2
¢ *a
2
C
w? _ SL
k2 C2
2.2 SL
1+ k B
‘e CZ 7 2

A S
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For kr >> 1, the phase velocities of all three hydromagnetic waves are
e
reduced to zero, Hence, as might be expected, in a very viscous plasma

no fluctuations propagate.

In summary for krm large, no magnetic information
is transmitted leaving only pressure fluctuations propagated by the
fast wave isotropically at the sound speed. Waves for which krt is
large propagate isothermally in the plasma. The fast and slow wave
speeds are somewhat reduced. Finally for kre large, viscosity slows
all three hydromagnetic wave speeds to zero. Although the derivation
given here of the dissipative effects on the linear hydromagnetic waves
has been extremely rough, the conclusions are essentially correct. 1In
the next section this information permits a physical discussion of the

effects of different dissipation processes on the shock structure.

3.0 Physical Discussion of Downstream Subshocks

To understand the physical basis for the formation of a subshock, a
slightly elaborated form of an argument due to Kantrowitz and Petschek
(1966) is presented in section 3.1 for the particularly simple case of a
perpendicular resistive fast shock. After establishing the fundamental
concepts, oblique progagation for fast and slow shocks in which resistivity
and thermal conductivity separately provide the shock dissipation is

discussed in section 3.2.

3.1 Perpendicular Fast Shock

Consider the problem in which a piston launches a fast non-
linear pulse perpendicular to a uniform magnetic field. Following the

arguments reviewed by Kantrowitz and Petschek (1966), the pulse steepens
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until its thickness reaches the longest dissipation length consistent with
the entropy production necessary to satisfy the Rankine-Hugoniot conditions.
Assume a steady shock is thereby formed in which resistivity provides all
the dissipation so that the shock thickness is the order of the magnetic

diffusion length.

The piston now launches another fast wave which, by the
evolutionary conditions, must catch up with the shock front. This wave
steepens until its gradients are also the order of the magnetic diffusion
length, and from section 2.2.1 its propagation speed is then reduced
to the sound speed. If the flow velocity behind the shock exceeds the
sound speed, the wave cannot reach the shock and the shock structure
remains steady; on the other hand, if the flow velocity behind is less
than the sound speed, the wave overtakes the shock thus providing the
shock with additional energy. Therefore, since resistivity cannot prevent
the shock strength from increasing, the shock front continues to steepen
until the next smaller dissipation length, for example, viscosity, is

reached.

The waves now catching up with the shock must steepen until
their wave length becomes comparable to the viscous scale length. However
from 2.2.3, viscosity reduces the fast wave speed to zero. Since the
flow velocity change across the shock can be reduced by at most a factor
of about four, the fluid carries all further waves downstream so that
the shock ceasgses to steepen. In this shock the velocity, density, and
temperature undergo shock transition in a thin layer or subshock characterized
by the viscous scale length. The magnetic field, responding only on the
magnetic scale length, has a thicker shock transition. The argument is

summarized in Figure 1.
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The relative magnitudes of the downstream flow velocity
and sound speed must be determined by solution of the Rankine-Hugoniot
conditions as a function of the upstream Mach number and plasma conditions.
For the perpendicular fast shock, Marshall (1955) showed that if the Mach
number is sufficiently large, resistivity no longer provides the required

dissipation, and a viscous subshock is formed.

3.2 Oblique Shocks

The possibility of a subshock exists whenever, after steepening
to wavelengths comparable to one of the dissipation scale lengths, the
downstream wave speed exceeds the downstream flow velocity. The allowed
flow velocities are determined by the evolutionary conditions, and for
comparison the appropriate hydromagnetic wave speeds are derived in
section 2.0. In the next two sections Friedrich's diagrams are used to
discuss separately possible subshock formation for resistive and thermal
conduction fast and slow oblique shocks. A discussion of the effects of

viscosity on the shock structure must await the analysis of section 4.0.

3.2.1 Resistive Shocks

Figure 2 is a sketch of a single quadrant of a Friedrich's
diagram for B2 < 1 and B2 > 1. B is roughly the ratio of thermal to
magnetic energy, and is defined hexe as B = Cg/C;. First consider possible
linear fast wave speeds and flow velocities behind a fast resistive shock
propagating at an angle to the magnetic field for B, < 1. By the
evolutionary conditions the flow speed Uy can be less than the sound
speed C if CSZ exceeds the intermediate speed CIZ. Therefore, from

Sa

Figure 2 for the fast resistive shock subshock formation is possible over
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the range of angles T/2 2 08, Z_cos-q(CSZ/CAZ). The corresponding
limitation on 01 must, of course, be determined from the Rankine-Hugoniot
conditions. For smaller angles, Uy > CI2 > CSZ. Here the increase in the
magnetic field strength across the fast shock is sufficient to prohibit

further steepening, so that resistivity alone provides the necessary

dissipation.

If Bs > 1, there exists at all angles a possible Uj

such that C LUz <C

I . Therefore sufficiently strong B, > 1 fast shocks
2

S2

possess a subshock structure. Note that for Bz >> 1, Uz is less than

CS even for moderate strength shocks. Since for Bz >> 1 the fast wave
2

which steepens to form the shock is almost electrostatic, resistivity,

which dissipates magnetic energy, has very little effect on the wave

speed, and a subshock is to be expected.

The slow hydromagnetic wave speed is reduced to zero
when krm >> 1. Since the fluid velocity behind the slow shock must be
finite, no slow waves can reach the shock, and therefore the slow resistive
shock does not form a subshock. Across the oblique slow shock the magnitude
of the magnetic field decreases (Kantrowitz and Petschek, 1966), so that

resistive dissipation is a required part of the shock structure.

3.2.2 Thermal Conductivity

Consider fast and slow shocks for which thermal conduct-
ivity is the primary dissipation process. The Friedrich's diagrams of
the linear hydromagnetic wave speeds for krt << 1 (solid lines) and
krt >> 1 (dashed lines) with Bz < 1 and By > 1 are presented in Figure 3.

If krt >> 1, the linear wave speeds are defined with Y = 1 in the sound
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speed. By the previous considerations a subshock formation for thermal
conduction fast and slow shocks is possible whenever the downstream flow
velocity is less than the fast or slow linear speed, 5F2 and ESLZ'

respectively. Such a subshock is the hydromagnetic analogue 'of the gas

dynamic isothermal discontinuity. For fast shocks, Uz < C is possible

Fa2

at all downstream angles and B2's except for By v 1 when EFz < CI2 may

occur at small angles. For slow shocks U, can be less than éSLz Zor all

downstream angles and B,'s. Note that for Bz << 1, CF2 gy an' so that

Uy < 5F only occurs for very weak fast shocks. Therefore for sufficiently
2

strong fast and slow shocks thermal conduction alone is incapable of providing

the required dissipation, and a subshock structure is expected.

The above discussion based on the linear hydromagnetic
wave speeds and the evolutionary conditions about the downstream point
only indicates the possibility that a subshock might be formed. An explicit
determination requires solution of the Rankine-Hugoniot conditions and
will not be discussed here. In the next section a method is developed
to examine the effects of the various dissipation processes for both the

upstream and downstream shock conditions.

4.0 Perturbation about the Shock Stationary Points

4.1 Introduction

To investigate the steady shock structure, eguations 2.1 are
assumed to be time independent in a frame of reference moving with the
shock. A specific coordinate system is chosen such that the shock

plane is perpendicular to the x axis and the magnetic field is contained



in the x — z plane; x > — © is upstream, x * + ® is downstream. All
quantities are assumed to vary only in the x direction. Equations 2.1

are then integrated once with respect to x to obtain

puU = P10 (4.1)
B2
4

pU2+P+£= [§n+§Jg—E—+A1 (4.2)

BB, av, BB,
W, =2 TNV & T T4 (4.3)

u? + v; v p BZ[VZBX —-UBZJ

P1 Ul[ 5 + T=1 EJ - i (4.4)

___C__z_g__.B_;+£n+€g._22_+n§_zz.+K§_T_+A
= (am 2o dx |2 3 ax (2 ax (2 ax 2

VB —UB + ——- = — U1B (4.5)
Z X Z

U and VZ are the x and z flow velocities, respectively; A; and A, are
constants of integration. The momentum equation for Vy and the By Ohm's
law admit only the solution Vy = B = 0, in agreement with the co-planarity

y

theorem. Bx is, of course, constant across the shock.

Ideally, to solve for the shock structure equations 4.1 — 4.5
are reduced to a single differential equation for one variable
which describes the change in that guantity from the upstream stationary
point to the downstream stationary point (Anderson, 1963). At the

stationary points all gradients are reduced to zero and the plasma
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guantities satisfy the Rankine-Hugoniot conditions. The non-linearity
of the above equations often renders obtaining a single general differential

equation difficult.

Rather than struggle with non-linear differential equations,
some of the effects of the various dissipation processes on the shock
structure can be obtained by studying the response of equations 4.1 — 4.5,
to a perturbation of the plasma parameters about the two stationary points.
For a shock transition to occur, the upstream (downstream) point must be
unstable (stable) to the perturbation in the direction of increasing x.
The definition of stability in this paper is not equivalent to the
definition employed in the study of shock stability with respect to
hydromagnetic perturbations (Akhiezer et al., 1959; Germain, 1960;
Anderson, 1963; Gardner and Kruskal, 1964). There the perturbed plasma
parameters are restricted to satisfy the linear hydromagnetic dispersion
relation and the Rankine-Hugoniot conditions. Here the perturbation isg
arbitrary. Finally, since only the linear response of eguations 4.1 — 4.5
is desired, the assumed constancy of the dissipation coefficients is
justified since, about the stationary points, changes in the dissipation

coefficients produce terms of second order in the perturbation.

Following the previous format each dissipation process is
considered separately. For completeness the rotational discontinuity is

also included in the discussion.

4.2 Resistive Dissipation

Setting the coefficients of viscosity and thermal conductivity
equal to zero, and performing a perturbation expansion of the plasma

parameters about their value at a stationary point, e.g., U = U; + &U,
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SU/U; << 1, equations 4.1 — 4.5 become a set of linear differential
equations for the perturbed quantities. It is convenient to obtain

the differential equation for the perturbed magnetic field, 6Bz. After
substituting 4.5 in 4.4, eliminating 6P using the x-momentum equation 4.2,
eliminating VZ and 6VZ by 4.3, the energy equation 4.4 reduces to an
equation involving only 8U and GBZ. Using this equation and 4.3 in the

Ohm's law 4.5, the following equation for GBZ is obtained

Bx 2 2 YP Bx Bz - le
[47rp - )[U ) } - =1 Bz[4'rrp amp
(4.6)
2
. UU1BZ _ U B, (SBZ . o2y dGBZ
47p Y — 1 47p u? — YP 41T dx

All plasma quantities without specific subscripts are evaluated at
either the upstream or downstream stationary point, and are, therefore,
constant. To eliminate U1BZ in 4.6, 4.5 and 4.3 are evaluated at a

1

stationary point to obtain

B2 [B —B ]
x| 2 Z1
4mpU

UiB =B —V B =UB —
Z1 z Z X z

Substituting for U1BZl and rewriting the equation in terms of the
hydromagnetic fast, slow, and sound speeds, 4.6 becomes

,  déB [U”‘ - czl {Uz —c? ]
C z F st s

4moU  dx 2¢. 2 23

(4.7)
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The coefficient of the gradient is the resistive scale length defined with
respect to flow velocity. The fast and slow speeds are defined by 2.6
without the dissipation terms where 6 is now the angle between the x-axis

and the magnetic field wvector.

The solution of 4.7 is a simple exponential function of x.
The sign of the coefficient of GBZ on the right hand side (RHS) determines
whether, for increasing x, the perturbation grows or decays in space.
Without loss of generality, each stationary point can be considered to
occur at x = 0. The evolutionary conditions for the particular shock
or discontinuity of interest fix the relationship between U and the
hydromagnetic speeds at the upstream and downstream stationary points
thus determining the sign of the RHS of 4.7. With the above restricted
definition of stability, the effect of an arbitrary perturbation on a
resistive shock and rotational discontinuity is investigated in the
following sections. Since many of the conclusions have already been

presented in section 3.0, the discussion below will stress new features.

4.2.1 Fast Resistive Shocks

The upstream flow velocity for a fast shock exceeds all
hydromagnetic propagation speeds, so that the RHS of 4.7 is positive, and
the upstream point is unstable. Therefore all fast shocks can be
initiated by resistivity. For B; >> 1 it seems curious that resistive
dissipation leads to a shock transition since magnetic field changes are
expected to be an inconsequential part of the shock structure. However,
the magnetic field energy must always increase across a fast shock so that

resistive dissipation, although weak, is important for the transition process.
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About the downstream stationary point first note that
8, cannot equal zero for B2 < 1 since the parallel fast shock is a complete
switch—-on shock for these conditions (Kantrowitz and Petschek, 1966).
If B> > 1 and 62 = O, CFz = CSz so that the denominator in 4.7 is

canceled by the first term in the numberator. Since Uy 2 C =C

A SL,’ the

downstream point is unstable. For all other angles and B's the downstream
point is stable if Uz > CSz and unstable if Uy < CSZ. If B2 < 1, the range
C
. . — S
of angles for which Uz < CS can occur is m/2 > 02 > cos ! &;i%.
2 Ap
An unstable downsteam point implies that resistivity
is incapable of preventing further shock steepening and establishing a

complete shock transition. A viscous subshock, therefore, is necessary

for a stable shock transition.

4.2.2 Rotational Discontinuity

From the evolutionary conditions for the rotational
discontinuity the numerator of 4.7 for both the upstream and downstream
conditions is negative. Note that if 01 = 02 = 0, the flow velocity
equals the intermediate speed at either the upstream point if B; < 1
or the downstream point if Bz > 1; hence these rotational discontinuities
are of zero strength. The upstream point is stable (unstable) if
U; > Csl, (Up < CS1)' The downstream point is stable (unstable) if
U, > CSz(U2 < C, ). Since for finite dissipation the flow velocity

S2

must decrease and the temperature increase across the discontinuity, if

Uy > CS1' so that the transition is initiated, Uz cannot exceed C S0
S2

that the downstream point must be unstable. Since U; < CS , Uz > C is
1

S2

the only combination that might produce a well defined transition, there

is no stable resistive rotational discontinuity.
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4.2.3 Resistive Slow Shocks

First consider the upstream conditions 61 # 0 and
B1 < 1. By the evolutionary conditions for slow shocks, the numerator
of 4.7 is negative. Therefore if U; > CSl (U; < Csl), the upstream
point is stable (unstable). Note that these conditions include the
complete switch-off shocké From Figure 2, U; can exceed CSl in the range
of angles 0 < 63 s_coé_l[—giﬂ; for larger angles C > C_ , and the

CAl Si I,

upstream point is unstable. If 6; = 0, the gas dynamic shock limit,

the upsteam point is stable unless U; = CAl' the maximum strength slow

shock, for which the RHS of 4.7 vanishes. Therefore if 0 < 03 f_coé~1

C
[Egii, B:1 <1, and U; > Csl, the slow shock transition cannot be
A,

initiated by resistive dissipation.

The interpretation of this result follows from
considering the steepening of the slow wave. In this range of angles
and B1 < 1, the slow wave is primarily electrostatically polarized
(Formisano and Kennel, 1969). 1In the shock formed by this wave the
magnetic energy available for heating the plasma is small. (Across the
slow shock the magnetic energy always decreases). Therefore if the
B1 < 1 slow shock is strong enough, U; > Csl, resistivity alone is
incapable of initiating the shock steepening, and another dissipation
mechanism is required. If the B; < 1 slow shock is weak, U; < CSl,
magnetic dissipation is sufficient to slow the upstream fluid and initiate

the shock. For m/2 > 81 > cos_l[EglJ the linear slow wave acquires a

A
substantial polarization along the magnetic field. The resulting slow

shock has sufficient magnetic energy available for dissipation so that

resistivity starts the shock transition.
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If By > 1 and 61 # 0, the RHS of 4.7 is positive, and
resistivity initiates the slow shock. If 83=0, B1 > 1, Uy = CAl = CSLl'
and the shock is of zero strength. For B; > 1 the linear slow wave is
primarily electromagnetically polarized. Therefore the dissipation

mechanism in the slow shock formed by the steepening of this wave should

be primarily resistive.

The downstream point of resistive slow shock is stable
to perturbations for all 62 and B, in agreement with the conclusion of
section 3.2.1. Therefore if resistivity starts the slow shock, resistive

dissipation alone is capable of providing a complete shock transition.

4.3 Thermal Conductivity

If resistivity and viscosity contribute negligibly to the
dissipation, equations 4.1 — 4.5 describe the transition for a thermal
conduction shock. As above, the equations are perturbed about a
stationary point, and, after eliminating the other perturbed guantities

in terms of 8U, the following equation is obtained

(y — 1)k a8u _ (Uz B cfz'l (Uz B CéL} sU

pU dx
e el - )

(4.8)

On the left hand side the coefficient of the gradient is proportional to
thermal conduction scale length defined with respect to the flow velocity.

As before éF’ ¢ are the fast and slow speeds with Y set equal to unity

SL

in the sound speed. Since many of the results were presented in

section 3.2.2, the discussion here will be brief.
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4.3.1 Fast Thermal Conduction Shocks

From 4.8 the upstream point is unstable for all angles
and R's so that the fast shock can be initiated by thermal dissipation.
If Uy > EFz[UZ < éFz}' the downstream point is stable (unstable) to an
arbitrary perturbation. Therefore, since éF differs only slightly from
CF' only for weak shocks can thermal conduction provide all the required
dissipation. For stronger shocks, either a resistive or viscous subshock

is formed.

4.3.2 Rotational Discontinuity

Using the evolutionary conditions, from 4.8 the upstream

point of the rotational discontinuity is stable (unstable) if U; > éF1
p

[Ul < éFl}. The downstream point is stable (unstable) if U, > EFZ lUg < éF
2

Since the pressure must increase and the flow velocity decrease across the
discontinuity, the pair U; < 5F1 and Up > an' which is the only stable
transition, cannot occur. Therefore the rotational discontinuity is

disallowed for thermal dissipation.

4.3.3 Slow Thermal Conduction Shocks

The upstream point is unstable for all angles and B's
except the small range of 831 > 1 such that CIl > Uy > 6F1 which is stable.
Hence thermal conduction can initiate most slow shock transitions. The
downstream point is stable (unstable) if U, > éSLz {Uz < ESLZJ' Therefore
thermal conductivity provides all the necessary dissipation only for

weak slow shocks.
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4.4 Viscosity

Dropping the resistive and thermal conduction terms, and

eliminating VZ, SVZ, and 0P, equations 4.1 — 4.5 reduce to the coupled

equations
2
B dds
X _ Z dsu
pU [UGBZ + BZ(SU] ~ (SBZ = 'ﬂ[U e BZ -d—x*‘} (4.9)
é. +C éég._ ~XP 8u + EE.@B (4.10)
3N ax - P oU am Pz .

For a parallel propagating shock, Bz = 0, 4.9 and 4.10 decouple and are
solvable separately for GBZ and SU. For oblique propagation 4.9 and
4.10 combine into a single second order differential equation for JU.

These two cases will be considered separately.

4.4.1 Parallel Shocks

If BZ = 0 both upstream and downstream, the solutions

of 4.9 and 4.10 are

f 02 —c?2 )
U s
§U = 86Uy exp|—F — x (4.11)
4 U
3N C
2 2
-C
~ pU I
6BZ = BBZO exP{ﬁ“'""ﬁE"—"x} (4.12)

where SUp and 6BZO are initial perturbations.

First consider the fast shock for Bi1 > 1, B2 > 1.
From 4.11 since U; > CS1’ and Uz < CSz by the evolutionary conditions,

the upstream (downstream) velocity perturbation is unstable (stable),
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indicating a well-behaved shock transition. Also the upstream point
is unstable if By < 1. For Bz < 1 the fast shock is a switch-on shock,
and Bzz # 0. Since the flow velocity always exceeds the intermediate
speed, 4.12 indicates that magnetic perturbation grows at both the
upstream and downstream points. Therefore the fast shock does not
remain parallel. An interpretation of these results will be delayed

until after the obligque case has been discussed.

The parallel slow shock for i > 1 and the parallel
rotational discontinuity for B; < 1 are of zero strength since U; = CI1'
The B3 > 1 rotational discontinuity is stable to velocity perturbations

upstream and downstream and is unstable to magnetic perturbations

upstream. Hence the parallel rotational discontinuity cannot be started.

The parallel slow shock for B; < 1 is unstable (stable)
to velocity perturbations upstream (downstream). Since the flow velocity
never exceeds the intermediate speed, the solution of 4.12 is GBZ =0
upstream and downstream. Therefore the B; < 1 parallel slow shock has
no magnetic changes across it and is the plasma analogue of the gas
dynamic shock. For this shock viscosity alone provides a well defined

transition.

4.4.2 Obligue Shocks

If Bz # 0, by solving 4.10 for 6BZ and substituting
into 4.9, the following second order differential equation for §U is

obtained
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4 4
= =N +
n[3 "t (:l a°60 _ |[y2 — 2 — 2 gin? 6] D4 |02 - 2| 3 N asy
02 dx? S A pU I oU dx

(4.13)

To solve 4.13 8U is assumed to vary as exp(Ax), and the resulting quadratic

equation in A has as solutions
4
n!§-n + C!U 4 ) )
A, = {§n+c]u —ci} +n[U -t —c? sinze}

2
sin?0) — (L n+g) (7 - ci)] (4.14)

1/2
+ 4 n(%— n o+ ) C§C1i sin?f

The * subscripts on A refer to the positive and negative square roots,

respectively. Note that A, is real.

If the limit BZ =0, i.e., 0 = 0, is taken in 4.14,
A+ corresponds to the solution 4.11 and A to 4.12. Hence the solutions

for 68U and 5BZ which are continuous at 6 = 0 are
Su = 6U, exp(l+x) (4.15)

582 = SBZO exp(kﬁg) (4.16)
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Two further expressions are useful in discussing these
solutions. From the properties of guadratic equations and 4.13, the

product of A+ A__is given by

2 fUZ—C;] {U?‘ c;L]
AL = =t ‘ (4.17)
ﬂ[g‘ﬂ + C} u?
In the range of angles 6 << 1 and 6 n gy the square root in 4.14 can be
expanded to obtain the approximate solutions
i
o2 a2 a2 ain?
5 X+ N [U CS C, sin 8 +
(4.18)
4 2.2 .. 2
. (3 n + C) CICA sin“6
2 2 2 .2 4 2 2
[n(U —cZ—ch sin®0) — (30 + ) (0 - CI)}
2.2 . 2
n CicZ sin“H
U
g—- A N - c]z: - LA (4.19)
2 2 2 5.2 4 2 2
n(v? - cZ - ck sin®) — (31 + ¢} (v* - )

For simplicity the stability discussion below will concentrate on near
parallel and perpendicular propagation., Extension to arbitrzry oblique

angles is accomplished by 4,17,
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4.4.3 Fast Shocks

About the upstream point X+ > 0 and A_ > O for both
91 << 1 and 61 Vv gu Since from 4.17 K+K_ > 0, it is likely that viscosity
is always capable of starting the fast shock transition. About the

>
downstream point 4.17 yields K+K_ < 0. From 4.18 and 4.19 A+ < 0 and

2

Ay sin?8,. Therefore the downstream point for the

< >
A Soifuicd +c
— Sa
fast shock is unstable to either velocity or magnetic perturbations, and
viscosity alone is incapable of providing a complete fast shock transition.
Since the magnetic field increases across all fast shocks, resistive
dissipation must be part of the shock structure even though the majority
of the dissipation is accomplished by viscosity. Therefore the structure
of fast shocks, for which resistivity alone is insufficient, consists of

a broad resistive region for the magnetic field change and a viscous

subshock.

4.4.4 Rotational Discontinuity

From 4.17 X+X__< 0 for both upstream and downstream
points. Therefore the viscous rotational discontinuity is always

unstable to an arbitrary perturbation.

4.4.5 Slow Shocks

The upstream point for the viscous slow shock has
A+X_ < 0. Across the parallel B; < 1 slow shock the magnetic field
is unchanged so that A__< 0 simply implies that GBZ = 0., For oblique
propagation, however, the magnetic field decreases across the slow shock
so that X+X_‘< 0 indicates that viscosity alone is insufficient for a

complete shock transition.
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First consider the slow shock for B3 < 1 and 61 << 1,

2 42 sinzel. If the

> < . 2 2
From 4.18 and 4.19 A < 0 and A > 0 if U < C
+ — S1 Ay

shock is strong, U; > CSI, viscosity starts the velocity but not the
magnetic transition. The results of section 4.2.3 indicated that for
these parameters resistivity alone could not start the slow shock.
Therefore the shock structure probably contains an upstream viscous
layer across which the wvelocity changes; resistive dissipation then
decreases the magnetic field. Weaker slow shocks, U; < Csl are not
started by viscosity but are by resistivity, and therefore probably

possess only a resistive structure.

For 61 << 1, By > 1, 4.18 and 4.19 yield A+ < 0 and
A_ > 0 so that viscosity does not start the velocity transition. Also
if 6, N-g, X+ < 0 and X_ > 0 for all B;. In these two cases the magnetic
field experiences a large change across the slow shock, and therefore,
considering the results of section 4.2.3, resistivity probably dominates

the shock structure.

From 4.17 the downstream point of the slow shock has
\,A_> 0. Both 02 << 1 and 0, V= have A_ < 0 and A_ < 0 so it is
likely that the downstream point is always stable. Recall from
section 4.2.3 that the downstream point is also stable for resistive

slow shocks.
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5.0 Discussion

The equations of hydromagnetics including dissipation describe the
shock transition between the upstream and downstream stationary points
at which the plasma quantities obey the Rankine-Hugoniot jump conditions.
The effect of each type of dissipation mechanism on the shock structure
was determined by solving for the linear response to an arbitrary
perturbation about the two stationary points. The evolutionary conditions
prescribed whether the perturbations grew or decayed in space. A well
defined shock transition for a particular form of dissipation is one in
which the upstream point is unstable and the downstream point is stable

to perturbations. The conclusions of the analysis are summarized below:

1. The upstream point of the fast resistive shock is always

unstable, indicating that resistivity starts the shock steepening. The

cos lt——zJ for B2 < 1
C
Ao

and at all angles for B2 > 1 is stable if U, > CS and unstable if

downstream point in the range of angles g33 62 >

C
Us < CS ; for B2 < 1 and 0 £ 8, £ cos &fiﬁ
2

} the downstream point is
A2 -
stable. If the downstream point is stable (unstable), resistivity alone
is (not) capable of prohibiting further shock steepening and providing
the required dissipation. If unstable, a subshock is necessary for a

complete transition.

C
2. For B1 < 1 and 0 < 6, ﬁ_coswl{agiJ the upstream point of the

Ay
resistive slow shock is stable if U; > CSl. The linear slow waves from
which this shock steepens are primarily electrostatically polarized.

Since the resultant shock has little magnetic energy available for

dissipation, resistivity alone cannot start the shock steepening and
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another dissipation process is required. For larger angles and all

B2 > 1 shocks, the upstream point is unstable — s reasonable conclusion
since the shock is formed by waves that are primarily electromagnetic.
The downstream point is stable for all B, and 02 so that resistivity

can complete the slow shock transition.

3. Thermal conduction shocks possess unstable downstream points
whenever for fast shocks Uy < éFz and for slow shocks Uj; < ESL . Since
2

éF and 6SL differ little from C, and C, respectively, thermal conductivity
provides the necessary dissipation only in the case of weak shocks.

Stronger shocks require either a resistive or viscous subshock.

4. Viscosity slows all hydromagnetic wave speeds to zero, and there-
fore is the strongest form of dissipation. The upstream point of the viscous
fast shock is always unstable. The downstream point is unstable to either
velocity or magnetic perturbations indicating that viscosity alone cannot
complete the shock transition. Some resistive dissipation is necessary to
increase the magnetic field across the shock. Therefore the strong fast

shock structure consists of both a resistive layer and a viscous subshock.

5. The parallel B; < 1 slow shock, having steepened from a purely
electrostatic linear wave, requires no magnetic dissipation so that
viscosity alone is sufficient for the shock transition. The oblique slow
shock cannot be completely started by viscosity since either the velocity
or the magnetic field perturbation is stable. For f3; < 1 and 0; << 1
strong shocks, U; > CSI, have both viscous and resistive dissipation
whereas weak shocks, U; < CS1’ probably are resistive. Verxry oblique shocks
for B1 < 1 and all B; > 1 shocks, which have substantial magnetic changes
across them, require resistivity to initiate the shock steepening. The

downstream point of the viscous slow shock is stable to perturbations.



W
W

6. The rotational discontinuity is disallowed for resistive,
thermal conduction, and viscous dissipation since no unstable-upstream,

stable~downstream combination exists.

In this paper no attempt has been made to determine at what Mach
number a particular dissipation process fails to provide a complete shock
transition. The relevant criteria developed here combined with the
Rankine-Hugoniot conditions would provide the solution to this problem.
When more than one dissipation process is required, details of the shock
structure must, of course, be determined by solving the non-linear hydro-

maghetic differential equations.

Finally a comment on the applicability of the above results to
collisionless shocks is perhaps warranted. In acollisionless shock
dissipation mechanisms other than those considered here, such as equali-
zation of electron-ion temperature differences, relaxation of pressure
anisotropy, wave-wave and wave-particle interactions, might contribute
to the shock structure. Each in turn must be examined as to whether or
not the required dissipation can be supplied. Some conclusions of the
hydromagnetic theory should, however, be applicable. The anomalous
dissipation for strong fast shocks must include both viscous and resistive
interactions. The dissipation for very oblique slow shocks is expected
to have the form of resistivity. Almost parallel strong slow shocks
should reqguire both an anomalous viscosity, which probably provides
most of the dissipation, and some anomalous resistivity. Dissipation by
anomalous thermal conduction is sufficient only for very weak fast and

slow shocks.
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FIGURE CAPTIONS

Figure 1. The phase velocity of the perpendicular fast wave vs the
wave vector k is sketched: when krm >> 1, CF is reduced to CS; when

kre >> 1, CF is reduced to zero. For comparison a typical upstream flow
velocity Ui > CF' and two possible downstream flow velocities CF > Us

>Cg > U2~ are included. If U, > Cy, waves propagating toward the shock
on the downstream side are convected away by the fluid; shock steepening
ceases and a steady shock of thickness r is formed. For strong shocks

-

such that U; < CS downstream waves continue to reach the shock causing
further steepening until the viscous scale length, re, is reached. Since
downstream waves have CF »> 0 when kre >> 1 they are convected away from
the shock; shock steepening ceases and a steady shock with a viscous

subshock of thickness v r, and a more gradual magnetic shock of thickness

3 ro is formed.

Figure 2. A quarter guadrant of a Friedrich's diagram for B Vv 1/2
and B v 2 (solid lines) including the sound speed (dashed line) is

sketched.

Figure 3. A guarter quadrant of a Friedrich's diagram for B8 Vv 1/2
and B v 2 is sketched (so0lid lines). Also shown (dashed lines) are the

fast éF and slow C speeds with ¥ = 1 appropriate for isothermal

SL

propagation when krt >> 1.
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